
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A Comparative Analysis of Greedy Algorithms and

Dynamic Programming for AI Strategy in Turn-Based

RPG Combat

Muhammad Kinan Arkansyaddad - 13523152

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: mkinanarkansyaddad@gmail.com , 13523152@std.stei.itb.ac.id

Abstract— Turn-based Role-Playing Games (RPGs) rely on

the quality of their Artificial Intelligence (AI) to create engaging

strategic challenges. This paper presents a quantitative

comparative analysis of two fundamental algorithms for

designing combat AI: the Greedy algorithm and Dynamic

Programming (DP). A custom text-based combat simulator was

developed in Java to provide a controlled experimental

environment. Within this simulator, a fast, heuristic-driven

Greedy AI was implemented and tested against a methodically

optimal DP AI across a suite of eight varied combat scenarios

designed to probe strategic decision-making. Performance was

measured based on win rates, battle duration, and the

computational time required for each AI to make a decision. The

results demonstrate a clear trade-off: the Dynamic Programming

agent achieved a perfect win rate by finding the globally optimal

solution in every case, but at a significantly higher computational

cost. Conversely, the Greedy agent was extremely fast but proved

strategically brittle, failing completely in scenarios that required

any degree of foresight. This study provides a practical, data-

driven benchmark of this classic "speed versus smarts" dilemma,

offering tangible insights for game developers on selecting

appropriate AI strategies for different in-game situations.

Keywords— Game AI, Greedy Algorithm, Dynamic

Programming, Turn-Based Combat, Role-Playing Games (RPGs)

I. INTRODUCTION

Fig. 1. Baldur’s Gate III (Source:

https://baldursgate3.game/wallpapers/thumbnails/wallpaper-01-thumb.jpg)

Turn-based Role-Playing Games (RPGs) are a foundational
genre in the world of video games, with roots stretching back
to tabletop classics like Dungeons & Dragons. Unlike action

games that test a player's reflexes, turn-based games are a test
of the mind. They give players the space to think, analyze the
battlefield, and make calculated decisions about how to best
use their characters' unique abilities. A significant portion of
the gameplay in these RPGs is dedicated to this strategic
combat, making it a vital part of the overall experience [1], [3].
The recent success of titles like Baldur's Gate 3, which won
Game of the Year, proves that this thoughtful, strategic style of
combat is more popular than ever.

Because players have the luxury of time to plan their
moves, the quality of the opponent's Artificial Intelligence (AI)
becomes incredibly important. The AI acts as the "brain" for
the enemies and is responsible for providing a meaningful
challenge. A well-designed AI can turn a simple fight into a
complex puzzle, forcing the player to adapt and think critically
about their strategy. A poorly designed AI, on the other hand,
can make battles feel like a repetitive chore, with enemies that
are predictable and easy to defeat. Therefore, the choice of the
algorithm that drives this AI has a direct and significant impact
on the game's quality.

This paper explores two classics, yet fundamentally
different, algorithmic approaches for designing this AI brain:
the Greedy algorithm and Dynamic Programming (DP). The
Greedy algorithm operates on a simple "live in the moment"
philosophy, so at every turn, it looks at its available moves and
picks the one that offers the best immediate reward, without
any consideration for future turns. It is fast, simple to
implement, and often effective. In contrast, Dynamic
Programming is the ultimate planner. It methodically explores
the entire tree of possible future moves to calculate the single,
provably optimal path to victory. It represents a gold standard
for strategic perfection but comes at a much higher
computational cost. Both techniques are well-established
paradigms in the broader field of game AI [2].

The purpose of this paper is to provide a quantitative
comparative analysis of these two algorithms for AI strategy
within a controlled, simulated turn-based RPG battle. While
previous research has explored this field from several angles,
this study carves out a specific niche. This paper performs an
experimental deep dive into the behavioral logic itself, placing
two fundamental algorithms in a direct, head-to-head

mailto:mkinanarkansyaddad@gmail.com
mailto:13523152@std.stei.itb.ac.id
https://baldursgate3.game/wallpapers/thumbnails/wallpaper-01-thumb.jpg

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

comparison. The primary contribution of this work is to
generate clear, measurable data that illustrates the classic
"speed vs. smarts" dilemma. This paper will present hard
numbers on key metrics, such as win rates, combat duration,
and the raw computation time for a decision, to create a
practical benchmark for game developers. This analysis aims to
provide a reference for choosing an AI strategy, weighing the
benefits of a perfectly optimal opponent against the significant
performance costs it may incur. The remainder of this paper is
structured as follows. Section II will cover the theoretical
foundations of the Greedy and Dynamic Programming
algorithms. Section III details the implementation of our
combat simulator and the AI agents. Section IV presents the
results of our experiments and provides a detailed analysis.
Finally, Section V concludes the paper, summarizing our
findings and suggesting potential directions for future research.

II. THEORETICAL BASIS

A. Greedy Algorithm

The Greedy algorithm is a popular and intuitive method for
solving optimization problems. Its core principle is to make a
locally optimal choice at each step with the hope of reaching a
globally optimal solution, a strategy aptly summarized as "take
what you can get now!" [4]. The algorithm builds its solution
step-by-step, and at each stage, it selects the best available
option according to some predefined heuristic, without
considering the long-term consequences of that choice.
Crucially, once a choice is made, it is irrevocable; the
algorithm never backtracks to reconsider a past decision.

The general structure of a Greedy algorithm can be
formalized through several key elements [4]:

• Candidate Set (C): The set of all possible elements from
which a solution can be built (e.g., coins, jobs, graph
edges).

• Solution Set (S): The set containing the candidates that
have been chosen to be part of the solution.

• Selection Function: A heuristic function that determines
which candidate from C is the "best" choice to consider
next.

• Feasibility Function: A function that checks if a selected
candidate can be feasibly added to the current solution
set S.

• Solution Function: A function that determines if the
current solution set S constitutes a complete and valid
solution to the problem.

• Objective Function: The function that the algorithm
seeks to maximize or minimize.

The primary appeal of the Greedy method is its simplicity
and speed. However, its major drawback is that it does not
guarantee an optimal solution for all problems [4]. The coin
exchange problem is a classic example: for a currency system,
a greedy strategy of always picking the largest denomination
coin will produce the minimum number of coins. Yet, for a

different system of denominations (e.g., coins of value {1, 7,
10} to make 15), the same greedy strategy fails, yielding a
suboptimal result [4].

Despite this, for a specific class of problems, a Greedy
strategy is provably optimal. Examples include:

- The Activity Selection Problem: By sorting activities
by their finish times and always choosing the next
compatible activity, the algorithm guarantees the
maximum number of activities can be scheduled [4].

- Minimum Spanning Tree (MST): Both Prim's
algorithm (which greedily grows a tree from a single
vertex by adding the cheapest connecting edge) and
Kruskal's algorithm (which greedily adds the cheapest
edge in the entire graph that doesn't form a cycle) are
guaranteed to find the MST of a graph [5].

- Fractional Knapsack Problem: Unlike the 0/1
Knapsack problem where a greedy approach fails, the
Fractional Knapsack problem is optimally solved by
greedily choosing items with the highest profit-to-
weight ratio [4].

- Huffman Coding: This data compression algorithm
builds an optimal prefix-free code tree by greedily
merging the two nodes with the lowest frequencies at
each step [6].

For problems where optimality is not guaranteed, such as
the 0/1 Knapsack Problem or the Traveling Salesperson
Problem (TSP), a Greedy algorithm can still serve as a fast
heuristic to find an approximate or sub-optimal solution [4],
[6].

B. Dynamic Programming

Dynamic Programming (DP) is a more powerful and
exhaustive method for solving optimization problems. In
contrast to the Greedy method, which commits to a single path
of decisions, DP methodically explores multiple decision paths
by breaking a problem down into a sequence of stages and
solving simpler, overlapping subproblems [4]. The term
"programming" here refers not to coding but to the use of
tables to construct a solution.

The power of Dynamic Programming is rooted in Richard
Bellman's Principle of Optimality. This principle states that an
optimal solution to a problem is composed of optimal solutions
to its subproblems [4]. This means that the optimal path from a
starting state to an ending state must contain optimal sub-paths
between any two intermediate states along that path. This
property allows DP to build a solution from the ground up,
storing the results of subproblems in a table (a technique
known as memoization) so they never have to be recomputed.

Problems well-suited for Dynamic Programming typically
have the following characteristics [7]:

• The problem can be divided into multiple stages, where
a decision is made at each stage.

• Each stage has a set of associated states.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

• A decision at one stage transforms the current state into
a state in the next stage.

• The cost or value of the solution accumulates stage by
stage.

• There exists a recursive relationship that connects the
optimal solution of one stage to the optimal solutions of
previous stages.

The process of developing a DP algorithm involves
characterizing the structure of the optimal solution, recursively
defining the value of that solution, and then computing this
value in a bottom-up (or top-down) fashion, typically by filling
out a table. This approach guarantees a globally optimal
solution because it considers all feasible decision sequences.

Classic problems that can be solved optimally using
Dynamic Programming include:

• The 0/1 Knapsack Problem: DP can solve this problem,
for which the Greedy algorithm fails. The recursive
formula decides whether to include an item by
comparing the optimal profit without the item versus
the optimal profit for the remaining capacity plus the
current item's profit [7].

• Shortest Path in a Multistage Graph: DP is used to find
the shortest path by calculating the minimum cost from
the start to every node at each stage. [7]

• The Traveling Salesperson Problem (TSP): While
extremely computationally intensive, DP can find the
guaranteed shortest tour for the TSP. It does so by
computing the shortest paths for all possible subsets of
vertices, building up from smaller subsets to larger
ones. [8]

III. IMPLEMENTATION

A. The Combat Simulation Environment

To ensure a controlled and reproducible experiment, a
custom text-based combat simulator was developed using Java
programming language. This environment serves as the testbed
where both the Greedy and Dynamic Programming AI agents
operate under an identical set of rules, allowing for a direct
comparison of their performance. The simulator manages the
game state, enforces combat rules, and logs the outcome of
each battle.

The environment is defined by the following core
components:

• Character Definitions: The simulation involves two
combatants:

o The Player Character (PC): This is the entity
controlled by the AI agents. It begins each
battle with 100 HP (Health Points) and 50
Mana.

o The Enemy: This character acts as a
consistent benchmark. It starts with 150 HP

and follows a fixed, predictable pattern: on
its turn, it always uses "Claw Attack," which
deals a constant 12 damage to the PC.

• PC Action System: The AI has three distinct actions it
can choose from on its turn, each with specific costs and
effects designed to create strategic trade-offs:

o Basic Attack: Deals 10 damage. Costs 0
Mana.

o Fireball: Deals 35 damage. Costs 20 Mana
and has a 1-turn cooldown (it cannot be used
on the turn immediately after it was used).

o Meditate: Deals 0 damage but restores 15
Mana.

• Combat Flow: The battle unfolds in discrete turns
managed by the simulator. The PC always takes the first
turn. A turn consists of the active character choosing
and executing an action. The simulation concludes
when either the PC's or the Enemy's HP drops to 0 or
below. The entire battle sequence, including actions
taken, damage dealt, and state changes, is printed to the
console as a text-based log.

B. Mapping Turn-Based RPG Combat Elements to Greedy

Algorithm Elements

To translate the abstract theory of a Greedy algorithm into a
functional AI, we must first map its formal components to the
concrete elements of our turn-based combat scenario. The
design of our Greedy AI is directly based on the elemental
structure of a Greedy algorithm as outlined in the lecture notes.
The following list details this mapping:

• Candidate Set (C): For any given turn, the candidate set
consists of the three possible actions the PC can take:
Basic Attack, Fireball, and Meditate.

• Solution Set (S): The solution set is the final sequence
of moves chosen by the AI agent from the start of the
battle to its conclusion.

• Selection Function: This is the core heuristic of the
Greedy AI. The function scores each candidate action
based on its immediate, local benefit. For this
implementation, the primary heuristic is maximizing
damage output on the current turn.

• Feasibility Function: Before an action can be chosen, its
feasibility is checked. For the Fireball action, this
function verifies that the PC's current mana is sufficient
(more or equal than 20) and that the skill is not on
cooldown. For Basic Attack and Meditate, the moves
are always considered feasible.

• Solution Function: This function determines if a
complete solution to the problem has been reached. In
the context of the simulation, this function checks for
the end-of-battle conditions after every turn. A solution
is considered complete when either the PC's HP or the
Enemy's HP drops to 0 or below.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

• Objective Function: The implicit objective of the
Greedy AI is to win the battle by applying its local
optimization strategy at each step, thereby maximizing
its chances of victory based on turn-by-turn decisions.

C. Mapping Turn-Based RPG Combat Elements to Dynamic

Programming Elements

The Dynamic Programming AI is implemented by
modeling the entire combat scenario as a multi-stage
optimization problem, directly aligning with DP theory. The
abstract DP concepts are mapped to our simulation as follows:

• Stages: Each turn in the battle represents a single stage
in the DP model. The problem progresses from stage k
(the current turn) to stage k+1 (the next turn).

• States: A state is a unique snapshot of the battle,
containing all information needed to make a perfect
decision. For our simulation, a state is defined by the
tuple: (pc_hp, pc_mana, enemy_hp, fireball_cooldown).
This state representation is the key used for
memoization.

• Decisions: At each stage, the decision to be made is
which of the valid actions (Basic Attack, Fireball, or
Meditate) to execute.

• Principle of Optimality: The implementation relies on
the Principle of Optimality, which posits that the best
sequence of moves from any state is composed of the
best first move plus the best sequence of moves from
the resulting state. This allows us to build the optimal
solution from the end of the battle backward.

• Recursive Relationship: The core of the DP solution is
the recurrence relation used to calculate the value of
each state. The value is defined as the minimum number
of turns required to win from that state. This is
analogous to the shortest path problem in a multistage
graph. The relation can be expressed as:

TurnsToWin(State) = 1 + min(TurnsToWin(NextState)) ()

D. Greedy AI Agent Implementation

The Greedy AI was implemented as a lightweight and
straightforward agent. Its logic follows a simple two-step
process each turn: score all possible moves, then pick the best
one. The scoring is based entirely on the immediate heuristic
value of each action.

The chooseMove method iterates through the available
actions (Basic Attack, Fireball, Meditate), checks their
feasibility based on the current mana and cooldowns, and
assigns a score. The scoring heuristic was designed to
aggressively prioritize damage: Fireball is assigned a score of
35, Basic Attack a score of 10, and Meditate a score of 1. The
low score for Meditate ensures it is only ever chosen if no
damaging actions are possible. The agent then simply executes
the action with the highest score.

Fig. 2. Greedy AI Algorithm

E. Dynamic Programming AI Implementation

The Dynamic Programming AI was implemented as a far
more complex agent that seeks a provably optimal solution. It
uses a recursive function with memoization to find the shortest
path to a win state.

The core of the implementation is a Map<GameState,
Outcome> which serves as the memoization table. The
GameState object, which implements equals() and hashCode()
methods, acts as the key. The Outcome is a simple class storing
the best move from that state and the minimum number of
turns required to win.

The main recursive function, findOptimalOutcome(state),
first checks if the current state has already been solved by
looking it up in the memoization table. If not, it explores every
valid move from the current state, recursively calling itself on
the resulting nextState. It compares the outcomes of these
recursive calls (adding 1 to the turn count for the current move)
and identifies the action that leads to victory in the fewest

Fig. 3. Dynamic Programming AI Implementation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

turns. Before returning, it stores this optimal result in the
memoization table to avoid re-computation in the future.

F. Experimental Design and Data Collection

To generate comprehensive data for our analysis, a rigorous
experimental protocol was established. The goal was to test
each AI's performance, efficiency, and strategic decision-
making across a wide variety of combat scenarios specifically
designed to highlight the differences between the Greedy and
Dynamic Programming approaches.

A suite of eight distinct test cases was designed. These
scenarios move beyond a simple baseline to create complex
situations involving resource management, strategic planning,
and efficiency under pressure. The initial conditions for each
test case are detailed below:

1. Baseline: A standard encounter with no immediate
constraints (PC: 100 HP, 50 Mana; Enemy: 150 HP, 12
Dmg).

2. Resource Scarcity: Tests the AI's ability to plan when
powerful moves are not immediately available (PC:
100 HP, 15 Mana).

3. Race Against Time: Puts the AI under significant
pressure from a standard enemy (PC: 70 HP, 50
Mana).

4. Durable Enemy: A longer battle against a less
threatening foe, testing mana efficiency (Enemy: 120
HP, 8 Dmg).

5. Glass Cannon Enemy: A short, high-damage race
where burst damage is optimal (Enemy: 70 HP, 25
Dmg).

6. Strategic Cooldown: Tests planning by making the best
move unavailable on the first turn (PC: Fireball
Cooldown = 1).

7. Mana Trap: A subtle resource puzzle where the AI is
just one mana point short of a key ability (PC: 100 HP,
19 Mana).

8. Perfect Lethal: A scenario where the optimal path is
simple and requires exact resource usage (PC: 100 HP,
40 Mana; Enemy: 70 HP).

The Java simulation was executed via a master script, the
ExperimentRunner. The simulator was instrumented to
automatically log the following key data points for every
individual battle:

• Result: The outcome of the battle, recorded as a "Win"
or a "Loss".

• Total Turns: The number of turns the battle lasted from
start to finish.

• Decision Time: The computation time required for the
AI to choose a move. This was measured in
nanoseconds using Java's System.nanoTime() for high
precision and later converted to milliseconds (ms) for
analysis.

The results from all simulations were aggregated and written to
a results.csv file, forming the basis for the quantitative analysis
presented in the following chapter.

IV. RESULT AND ANALYSIS

A. Overall Performance Summary

The complete aggregated results from all simulations are
presented in Table I. This table provides a high-level overview
of each AI's performance across the test suite, serving as the
foundation for the subsequent analysis.

TABLE I. AI PERFORMANCE ACROSS ALL TEST CASES

Test Case AI Type Result Turns to

End

Decision

Time (ms)

Baseline Greedy Win 9 0.0002

DP Win 9 0.0075

Resource

Scarcity

Greedy Win 13 0.0002

DP Win 10 0.0049

Race
Against

Time

Greedy Loss 6 0.0002

DP Win 6 0.0031

Durable
Enemy

Greedy Win 12 0.0002

DP Win 12 0.0053

Glass

Cannon

Enemy

Greedy Win 3 0.0002

DP Win 3 0.0016

Strategic

Cooldown

Greedy Win 9 0.0001

DP Win 9 0.0039

Mana Trap Greedy Lose 13 0.0002

DP Win 10 0.0041

Perfect
Lethal

Greedy Win 4 0.0002

DP Win 4 0.0022

a. Decision time may be different for different devices

Several clear trends emerge from this data. First, the
Dynamic Programming AI achieves a 100% win rate across all
scenarios where victory is possible. The Greedy AI, in contrast,
fails completely in two specific scenarios ("Race Against
Time" and "Mana Trap"). Second, in cases where both AIs
win, the DP AI consistently finds the solution in an equal or
fewer number of turns. Finally, there is a stark and consistent
difference in computational cost: the DP AI's average decision
time is consistently one to two orders of magnitude greater than
that of the nearly instantaneous Greedy AI.

B. Analysis of Strategic Capabilities

To understand why these performance differences occurred,
a deeper analysis of the AI's decision-making in key scenarios
is required. The test cases were specifically designed to expose
the logical limitations of the Greedy approach and highlight the
value of the DP algorithm's foresight.

The most telling results come from the "Resource Scarcity"
and "Mana Trap" scenarios. In the "Mana Trap" case (PC starts
with 19 Mana), the PC is just one mana point short of being
able to cast its most powerful spell, Fireball. The Greedy AI's
heuristic, which scores Basic Attack (10) higher than Meditate
(1), forces it into a suboptimal loop. It repeatedly uses Basic
Attack, never choosing to sacrifice a turn of minor damage to

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

gain the mana needed for a Fireball. This flawed logic leads to
a 0% win rate.

The DP AI, however, demonstrates the power of foresight.
By evaluating future states, its algorithm correctly identifies
that the path to victory, although non-obvious, begins with the
Meditate action. It understands that sacrificing one turn of
damage to gain 15 mana unlocks a much faster and more
powerful sequence of Fireball attacks later on. This single,
strategic setup move is something the Greedy algorithm is
fundamentally incapable of reasoning about, leading to the DP
AI's win in 10 turns compared to the Greedy AI's guaranteed
loss in 13 turns. A similar, though less catastrophic, outcome is
observed in the "Resource Scarcity" scenario, where the DP AI
finds the win three turns faster than the Greedy AI by using a
similar lookahead strategy.

Not all scenarios require complex planning. In the "Glass
Cannon Enemy" and "Perfect Lethal" test cases, the
performance of the Greedy AI, in terms of turns-to-win, was
identical to that of the DP AI. In the "Glass Cannon" scenario,
the enemy is a high-damage threat that must be defeated as
quickly as possible. Here, the Greedy AI's simple heuristic of
"use the highest immediate damage move" aligns perfectly
with the globally optimal strategy found by the DP AI. There is
no need for a setup move or long-term planning; maximum
immediate damage is the correct choice at every step.

This is a critical finding, as it demonstrates that a more
complex algorithm is not universally superior. The
effectiveness of a simple heuristic is highly dependent on the
problem's context. For straightforward combat encounters
where the optimal path is aggressive and direct, a Greedy
algorithm can perform just as well as a more computationally
expensive DP algorithm, achieving the same outcome with a
fraction of the processing power.

C. Analysis of Computational Cost

While the DP AI's strategic superiority is clear, it comes at
a significant and measurable cost. Decision Time metric in
Table I quantifies the computational overhead required for the
DP algorithm to find its optimal solution.

Fig. 4. Comparison of Decision Times (ms) on A Logarithmic Scale

As illustrated in Fig. 4, the computational resources

required by the DP AI are consistently greater than those
required by the Greedy AI. The Greedy AI's decision is nearly
instantaneous (averaging ~0.0002 ms), as it involves only a
simple loop and comparison. The DP AI, in contrast, must
recursively explore a tree of potential game states. While

memoization prevents this from becoming a full brute-force
search, the process of generating states, checking the
memoization table, and performing recursive calls still carries a
substantial overhead (averaging ~0.005 ms). Although this time
is trivial in our simple simulator, in a full-scale game with a
vastly larger state space (more actions, status effects, etc.), this
cost could scale to become a source of noticeable lag or
performance degradation.

D. Discussion of Implications for Game Development

The results from this experiment confirm the well-
understood theoretical trade-off between Greedy and Dynamic
Programming algorithms and place it in a practical game
development context. The DP AI is strategically perfect but
computationally "expensive," while the Greedy AI is
computationally "cheap" but strategically "brittle."

This data provides a clear framework for a game
developer's design choices. A one-size-fits-all approach to AI
is not optimal. For the hundreds of common, low-stakes
enemies a player might encounter, a fast and efficient Greedy
AI is more than sufficient. Its flaws are unlikely to be noticed
in quick battles, and its low performance overhead allows for
many such enemies to be active at once without impacting the
game's frame rate.

For critical, memorable encounters, such as a major boss
battle, a developer could justify the higher computational cost
of a DP-style agent. In these fights, players expect a deep,
strategic challenge. An AI that can make non-obvious,
intelligent setup moves, the very behavior the DP AI
demonstrated in the "Mana Trap" scenario, provides exactly
this kind of engaging experience. Therefore, a hybrid approach,
using cheap, simple AIs for the rank-and-file and reserving
complex, optimal AIs for key moments, represents the most
effective application of these findings.

V. CONCLUSION

This paper presented a quantitative comparative analysis of
a Greedy algorithm and a Dynamic Programming approach for
designing AI strategy in a controlled, turn-based RPG combat
simulator. Through a series of eight distinct test cases, each AI
is being evaluated on its strategic capability, combat
effectiveness, and computational performance. The
experimental results confirmed the initial hypothesis: Dynamic
Programming AI, by exhaustively exploring the state space,
consistently achieved a strategically optimal outcome, winning
battles in the minimum possible number of turns. However,
this optimality came at the cost of a significantly higher
computational overhead. Conversely, the Greedy AI proved to
be extremely fast and efficient but demonstrated critical
strategic flaws in scenarios that required any degree of
foresight, leading to suboptimal solutions or outright failure.

The primary contribution of this research is the generation
of a clear, data-driven benchmark that illustrates the classic
"speed vs. smarts" trade-off within the practical context of
game AI development. By providing hard numbers on metrics
like win rates, turn counts, and decision times across varied

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

scenarios, this paper offers a tangible reference for developers.
However, the study has its limitations. The combat model was
intentionally simplified, involving a single enemy and a limited
set of actions. A full-scale RPG with multiple party members, a
wide array of skills, and numerous status effects would create a
state space with many orders of magnitude larger, which would
likely make the pure Dynamic Programming approach used
here computationally infeasible. Furthermore, this analysis was
limited to two classic, deterministic algorithms and did not
explore other modern AI paradigms.

Looking forward, this research opens several interesting
avenues for future work. The most promising direction would
be the development of a hybrid AI model that combines the
strengths of both algorithms. One could design an agent that
uses the fast Greedy logic for the majority of a battle but
invokes a limited-depth DP search when the situation becomes
critical (e.g., when health is low or a powerful enemy ability is
about to be used). Another area for future research would be to
expand the experiment to a more complex combat environment
to analyze how these performance trade-offs scale. Finally,
comparing these foundational algorithms against other
techniques, such as Monte Carlo Tree Search or a simple
Reinforcement Learning agent, would provide an even broader
understanding of the AI strategy landscape.

VIDEO LINK AT YOUTUBE

Video Link: https://youtu.be/HqALZ6o6EkY

Program Source Code: https://github.com/kin-ark/Simple-
Turn-Based-RPG-Combat-Simulator

ACKNOWLEDGMENT

The author expresses gratitude to all parties who have
assisted in the making of this paper, especially to:

1. Allah Swt.

2. Both parents, for providing moral and material support.

3. Friends who have encouraged and aided in the
completion of this paper.

4. Monterico Adrian, S.T., M.T. as the lecturers for the
IF2211 Algorithm Strategy course, for his invaluable guidance
and support throughout the semester.

The author deeply appreciates all the assistance,
encouragement, and kindness received from these individuals
and groups, without which the completion of this paper would
not have been possible.

REFERENCES

[1] C. D. Stenström and S. Björk, “Understanding computer role-playing
games - a genre analysis based on gameplay features in combat
systems,” in Proc. International Conference on Foundations of Digital
Games, 2013. Available online: https://www.diva-
portal.org/smash/get/diva2:1043334/FULLTEXT01.pdf (accessed on 22
June 2025).

[2] Y. Lu and W. Li, “Techniques and paradigms in modern game AI
systems,” Algorithms, vol. 15, no. 282, Aug. 2022. Available online:
https://pdfs.semanticscholar.org/b7f9/89be140ac00c1fbd0a9cf60a62964
e0d452a.pdf (accessed on 24 June 2025).

[3] F. Amereh, “A study and implementation of turn-based combat systems
in role-playing games,” M.S. thesis, Dept. Computer Science, Aalto
University, Espoo, Finland, 2024. Available online:
https://aaltodoc.aalto.fi/server/api/core/bitstreams/9eb57411-982e-4e64-
ad57-377a5eb78f19/content (accessed on 22 June 2025)

[4] R. Munir, Algoritma Greedy (Bagian 1): Bahan Kuliah IF2211 Strategi
Algoritma. Bandung, Indonesia: Program Studi Teknik Informatika,
Institut Teknologi Bandung, 2025. Available online:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-
Algoritma-Greedy-(2025)-Bag1.pdf (accessed on 24 June 2025)

[5] R. Munir, Algoritma Greedy (Bagian 2): Bahan Kuliah IF2211 Strategi
Algoritma. Bandung, Indonesia: Program Studi Teknik Informatika,
Institut Teknologi Bandung, 2025. Available online:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/05-
Algoritma-Greedy-(2025)-Bag2.pdf (accessed on 24 June 2025)

[6] R. Munir, Algoritma Greedy (Bagian 3): Bahan Kuliah IF2211 Strategi
Algoritma. Bandung, Indonesia: Program Studi Teknik Informatika,
Institut Teknologi Bandung, 2025. Available online:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/06-
Algoritma-Greedy-(2025)-Bag3.pdf (accessed on 24 June 2025)

[7] R. Munir, Program Dinamis (Bagian 1): Bahan Kuliah IF2211 Strategi
Algoritma. Bandung, Indonesia: Program Studi Teknik Informatika,
Institut Teknologi Bandung, 2025. Available online:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-
Program-Dinamis-(2025)-Bagian1.pdf (accessed on 24 June 2025)

[8] R. Munir, Program Dinamis (Bagian 2): Bahan Kuliah IF2211 Strategi
Algoritma. Bandung, Indonesia: Program Studi Teknik Informatika,
Institut Teknologi Bandung, 2025. Available online:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-
Program-Dinamis-(2025)-Bagian2.pdf (accessed on 24 June 2025)

STATEMENT

I hereby declare that this paper I have written is my own

work, not an adaptation or translation of someone else's

paper, and not plagiarism.

Bandung, 24 June 2025

Muhammad Kinan Arkansyaddad

13523152

https://youtu.be/HqALZ6o6EkY
https://github.com/kin-ark/Simple-Turn-Based-RPG-Combat-Simulator
https://github.com/kin-ark/Simple-Turn-Based-RPG-Combat-Simulator
https://www.diva-portal.org/smash/get/diva2:1043334/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1043334/FULLTEXT01.pdf
https://pdfs.semanticscholar.org/b7f9/89be140ac00c1fbd0a9cf60a62964e0d452a.pdf
https://pdfs.semanticscholar.org/b7f9/89be140ac00c1fbd0a9cf60a62964e0d452a.pdf
https://aaltodoc.aalto.fi/server/api/core/bitstreams/9eb57411-982e-4e64-ad57-377a5eb78f19/content
https://aaltodoc.aalto.fi/server/api/core/bitstreams/9eb57411-982e-4e64-ad57-377a5eb78f19/content
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Algoritma-Greedy-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Algoritma-Greedy-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/05-Algoritma-Greedy-(2025)-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/05-Algoritma-Greedy-(2025)-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/06-Algoritma-Greedy-(2025)-Bag3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/06-Algoritma-Greedy-(2025)-Bag3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf

