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Abstract— Turn-based Role-Playing Games (RPGs) rely on 

the quality of their Artificial Intelligence (AI) to create engaging 

strategic challenges. This paper presents a quantitative 

comparative analysis of two fundamental algorithms for 

designing combat AI: the Greedy algorithm and Dynamic 

Programming (DP). A custom text-based combat simulator was 

developed in Java to provide a controlled experimental 

environment. Within this simulator, a fast, heuristic-driven 

Greedy AI was implemented and tested against a methodically 

optimal DP AI across a suite of eight varied combat scenarios 

designed to probe strategic decision-making. Performance was 

measured based on win rates, battle duration, and the 

computational time required for each AI to make a decision. The 

results demonstrate a clear trade-off: the Dynamic Programming 

agent achieved a perfect win rate by finding the globally optimal 

solution in every case, but at a significantly higher computational 

cost. Conversely, the Greedy agent was extremely fast but proved 

strategically brittle, failing completely in scenarios that required 

any degree of foresight. This study provides a practical, data-

driven benchmark of this classic "speed versus smarts" dilemma, 

offering tangible insights for game developers on selecting 

appropriate AI strategies for different in-game situations. 

Keywords— Game AI, Greedy Algorithm, Dynamic 

Programming, Turn-Based Combat, Role-Playing Games (RPGs) 

I.  INTRODUCTION 

 
Fig. 1. Baldur’s Gate III (Source: 

https://baldursgate3.game/wallpapers/thumbnails/wallpaper-01-thumb.jpg) 

 

Turn-based Role-Playing Games (RPGs) are a foundational 
genre in the world of video games, with roots stretching back 
to tabletop classics like Dungeons & Dragons. Unlike action 

games that test a player's reflexes, turn-based games are a test 
of the mind. They give players the space to think, analyze the 
battlefield, and make calculated decisions about how to best 
use their characters' unique abilities. A significant portion of 
the gameplay in these RPGs is dedicated to this strategic 
combat, making it a vital part of the overall experience [1], [3]. 
The recent success of titles like Baldur's Gate 3, which won 
Game of the Year, proves that this thoughtful, strategic style of 
combat is more popular than ever. 

Because players have the luxury of time to plan their 
moves, the quality of the opponent's Artificial Intelligence (AI) 
becomes incredibly important. The AI acts as the "brain" for 
the enemies and is responsible for providing a meaningful 
challenge. A well-designed AI can turn a simple fight into a 
complex puzzle, forcing the player to adapt and think critically 
about their strategy. A poorly designed AI, on the other hand, 
can make battles feel like a repetitive chore, with enemies that 
are predictable and easy to defeat. Therefore, the choice of the 
algorithm that drives this AI has a direct and significant impact 
on the game's quality. 

This paper explores two classics, yet fundamentally 
different, algorithmic approaches for designing this AI brain: 
the Greedy algorithm and Dynamic Programming (DP). The 
Greedy algorithm operates on a simple "live in the moment" 
philosophy, so at every turn, it looks at its available moves and 
picks the one that offers the best immediate reward, without 
any consideration for future turns. It is fast, simple to 
implement, and often effective. In contrast, Dynamic 
Programming is the ultimate planner. It methodically explores 
the entire tree of possible future moves to calculate the single, 
provably optimal path to victory. It represents a gold standard 
for strategic perfection but comes at a much higher 
computational cost. Both techniques are well-established 
paradigms in the broader field of game AI [2]. 

The purpose of this paper is to provide a quantitative 
comparative analysis of these two algorithms for AI strategy 
within a controlled, simulated turn-based RPG battle. While 
previous research has explored this field from several angles, 
this study carves out a specific niche. This paper performs an 
experimental deep dive into the behavioral logic itself, placing 
two fundamental algorithms in a direct, head-to-head 
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comparison. The primary contribution of this work is to 
generate clear, measurable data that illustrates the classic 
"speed vs. smarts" dilemma. This paper will present hard 
numbers on key metrics, such as win rates, combat duration, 
and the raw computation time for a decision, to create a 
practical benchmark for game developers. This analysis aims to 
provide a reference for choosing an AI strategy, weighing the 
benefits of a perfectly optimal opponent against the significant 
performance costs it may incur. The remainder of this paper is 
structured as follows. Section II will cover the theoretical 
foundations of the Greedy and Dynamic Programming 
algorithms. Section III details the implementation of our 
combat simulator and the AI agents. Section IV presents the 
results of our experiments and provides a detailed analysis. 
Finally, Section V concludes the paper, summarizing our 
findings and suggesting potential directions for future research. 

 

II. THEORETICAL BASIS 

A. Greedy Algorithm 

The Greedy algorithm is a popular and intuitive method for 
solving optimization problems. Its core principle is to make a 
locally optimal choice at each step with the hope of reaching a 
globally optimal solution, a strategy aptly summarized as "take 
what you can get now!" [4]. The algorithm builds its solution 
step-by-step, and at each stage, it selects the best available 
option according to some predefined heuristic, without 
considering the long-term consequences of that choice. 
Crucially, once a choice is made, it is irrevocable; the 
algorithm never backtracks to reconsider a past decision. 

The general structure of a Greedy algorithm can be 
formalized through several key elements [4]: 

• Candidate Set (C): The set of all possible elements from 
which a solution can be built (e.g., coins, jobs, graph 
edges). 

• Solution Set (S): The set containing the candidates that 
have been chosen to be part of the solution. 

• Selection Function: A heuristic function that determines 
which candidate from C is the "best" choice to consider 
next. 

• Feasibility Function: A function that checks if a selected 
candidate can be feasibly added to the current solution 
set S. 

• Solution Function: A function that determines if the 
current solution set S constitutes a complete and valid 
solution to the problem. 

• Objective Function: The function that the algorithm 
seeks to maximize or minimize. 

The primary appeal of the Greedy method is its simplicity 
and speed. However, its major drawback is that it does not 
guarantee an optimal solution for all problems [4]. The coin 
exchange problem is a classic example: for a currency system, 
a greedy strategy of always picking the largest denomination 
coin will produce the minimum number of coins. Yet, for a 

different system of denominations (e.g., coins of value {1, 7, 
10} to make 15), the same greedy strategy fails, yielding a 
suboptimal result [4]. 

Despite this, for a specific class of problems, a Greedy 
strategy is provably optimal. Examples include: 

- The Activity Selection Problem: By sorting activities 
by their finish times and always choosing the next 
compatible activity, the algorithm guarantees the 
maximum number of activities can be scheduled [4]. 

- Minimum Spanning Tree (MST): Both Prim's 
algorithm (which greedily grows a tree from a single 
vertex by adding the cheapest connecting edge) and 
Kruskal's algorithm (which greedily adds the cheapest 
edge in the entire graph that doesn't form a cycle) are 
guaranteed to find the MST of a graph [5]. 

- Fractional Knapsack Problem: Unlike the 0/1 
Knapsack problem where a greedy approach fails, the 
Fractional Knapsack problem is optimally solved by 
greedily choosing items with the highest profit-to-
weight ratio [4]. 

- Huffman Coding: This data compression algorithm 
builds an optimal prefix-free code tree by greedily 
merging the two nodes with the lowest frequencies at 
each step [6]. 

For problems where optimality is not guaranteed, such as 
the 0/1 Knapsack Problem or the Traveling Salesperson 
Problem (TSP), a Greedy algorithm can still serve as a fast 
heuristic to find an approximate or sub-optimal solution [4], 
[6]. 

B. Dynamic Programming 

Dynamic Programming (DP) is a more powerful and 
exhaustive method for solving optimization problems. In 
contrast to the Greedy method, which commits to a single path 
of decisions, DP methodically explores multiple decision paths 
by breaking a problem down into a sequence of stages and 
solving simpler, overlapping subproblems [4]. The term 
"programming" here refers not to coding but to the use of 
tables to construct a solution. 

The power of Dynamic Programming is rooted in Richard 
Bellman's Principle of Optimality. This principle states that an 
optimal solution to a problem is composed of optimal solutions 
to its subproblems [4]. This means that the optimal path from a 
starting state to an ending state must contain optimal sub-paths 
between any two intermediate states along that path. This 
property allows DP to build a solution from the ground up, 
storing the results of subproblems in a table (a technique 
known as memoization) so they never have to be recomputed. 

Problems well-suited for Dynamic Programming typically 
have the following characteristics [7]: 

• The problem can be divided into multiple stages, where 
a decision is made at each stage. 

• Each stage has a set of associated states. 
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• A decision at one stage transforms the current state into 
a state in the next stage. 

• The cost or value of the solution accumulates stage by 
stage. 

• There exists a recursive relationship that connects the 
optimal solution of one stage to the optimal solutions of 
previous stages. 

The process of developing a DP algorithm involves 
characterizing the structure of the optimal solution, recursively 
defining the value of that solution, and then computing this 
value in a bottom-up (or top-down) fashion, typically by filling 
out a table. This approach guarantees a globally optimal 
solution because it considers all feasible decision sequences. 

Classic problems that can be solved optimally using 
Dynamic Programming include: 

• The 0/1 Knapsack Problem: DP can solve this problem, 
for which the Greedy algorithm fails. The recursive 
formula decides whether to include an item by 
comparing the optimal profit without the item versus 
the optimal profit for the remaining capacity plus the 
current item's profit [7]. 

• Shortest Path in a Multistage Graph: DP is used to find 
the shortest path by calculating the minimum cost from 
the start to every node at each stage. [7] 

• The Traveling Salesperson Problem (TSP): While 
extremely computationally intensive, DP can find the 
guaranteed shortest tour for the TSP. It does so by 
computing the shortest paths for all possible subsets of 
vertices, building up from smaller subsets to larger 
ones. [8] 

 

III. IMPLEMENTATION 

A. The Combat Simulation Environment 

To ensure a controlled and reproducible experiment, a 
custom text-based combat simulator was developed using Java 
programming language. This environment serves as the testbed 
where both the Greedy and Dynamic Programming AI agents 
operate under an identical set of rules, allowing for a direct 
comparison of their performance. The simulator manages the 
game state, enforces combat rules, and logs the outcome of 
each battle. 

The environment is defined by the following core 
components: 

• Character Definitions: The simulation involves two 
combatants: 

o The Player Character (PC): This is the entity 
controlled by the AI agents. It begins each 
battle with 100 HP (Health Points) and 50 
Mana. 

o The Enemy: This character acts as a 
consistent benchmark. It starts with 150 HP 

and follows a fixed, predictable pattern: on 
its turn, it always uses "Claw Attack," which 
deals a constant 12 damage to the PC. 

• PC Action System: The AI has three distinct actions it 
can choose from on its turn, each with specific costs and 
effects designed to create strategic trade-offs: 

o Basic Attack: Deals 10 damage. Costs 0 
Mana. 

o Fireball: Deals 35 damage. Costs 20 Mana 
and has a 1-turn cooldown (it cannot be used 
on the turn immediately after it was used). 

o Meditate: Deals 0 damage but restores 15 
Mana. 

• Combat Flow: The battle unfolds in discrete turns 
managed by the simulator. The PC always takes the first 
turn. A turn consists of the active character choosing 
and executing an action. The simulation concludes 
when either the PC's or the Enemy's HP drops to 0 or 
below. The entire battle sequence, including actions 
taken, damage dealt, and state changes, is printed to the 
console as a text-based log. 

B. Mapping Turn-Based RPG Combat Elements to Greedy 

Algorithm Elements 

To translate the abstract theory of a Greedy algorithm into a 
functional AI, we must first map its formal components to the 
concrete elements of our turn-based combat scenario. The 
design of our Greedy AI is directly based on the elemental 
structure of a Greedy algorithm as outlined in the lecture notes. 
The following list details this mapping: 

• Candidate Set (C): For any given turn, the candidate set 
consists of the three possible actions the PC can take: 
Basic Attack, Fireball, and Meditate. 

• Solution Set (S): The solution set is the final sequence 
of moves chosen by the AI agent from the start of the 
battle to its conclusion. 

• Selection Function: This is the core heuristic of the 
Greedy AI. The function scores each candidate action 
based on its immediate, local benefit. For this 
implementation, the primary heuristic is maximizing 
damage output on the current turn. 

• Feasibility Function: Before an action can be chosen, its 
feasibility is checked. For the Fireball action, this 
function verifies that the PC's current mana is sufficient 
(more or equal than 20) and that the skill is not on 
cooldown. For Basic Attack and Meditate, the moves 
are always considered feasible. 

• Solution Function: This function determines if a 
complete solution to the problem has been reached. In 
the context of the simulation, this function checks for 
the end-of-battle conditions after every turn. A solution 
is considered complete when either the PC's HP or the 
Enemy's HP drops to 0 or below. 
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• Objective Function: The implicit objective of the 
Greedy AI is to win the battle by applying its local 
optimization strategy at each step, thereby maximizing 
its chances of victory based on turn-by-turn decisions. 

C. Mapping Turn-Based RPG Combat Elements to Dynamic 

Programming Elements 

The Dynamic Programming AI is implemented by 
modeling the entire combat scenario as a multi-stage 
optimization problem, directly aligning with DP theory. The 
abstract DP concepts are mapped to our simulation as follows: 

• Stages: Each turn in the battle represents a single stage 
in the DP model. The problem progresses from stage k 
(the current turn) to stage k+1 (the next turn). 

• States: A state is a unique snapshot of the battle, 
containing all information needed to make a perfect 
decision. For our simulation, a state is defined by the 
tuple: (pc_hp, pc_mana, enemy_hp, fireball_cooldown). 
This state representation is the key used for 
memoization. 

• Decisions: At each stage, the decision to be made is 
which of the valid actions (Basic Attack, Fireball, or 
Meditate) to execute. 

• Principle of Optimality: The implementation relies on 
the Principle of Optimality, which posits that the best 
sequence of moves from any state is composed of the 
best first move plus the best sequence of moves from 
the resulting state. This allows us to build the optimal 
solution from the end of the battle backward. 

• Recursive Relationship: The core of the DP solution is 
the recurrence relation used to calculate the value of 
each state. The value is defined as the minimum number 
of turns required to win from that state. This is 
analogous to the shortest path problem in a multistage 
graph. The relation can be expressed as: 

TurnsToWin(State) = 1 + min(TurnsToWin(NextState)) () 

D. Greedy AI Agent Implementation 

The Greedy AI was implemented as a lightweight and 
straightforward agent. Its logic follows a simple two-step 
process each turn: score all possible moves, then pick the best 
one. The scoring is based entirely on the immediate heuristic 
value of each action. 

The chooseMove method iterates through the available 
actions (Basic Attack, Fireball, Meditate), checks their 
feasibility based on the current mana and cooldowns, and 
assigns a score. The scoring heuristic was designed to 
aggressively prioritize damage: Fireball is assigned a score of 
35, Basic Attack a score of 10, and Meditate a score of 1. The 
low score for Meditate ensures it is only ever chosen if no 
damaging actions are possible. The agent then simply executes 
the action with the highest score. 

 

Fig. 2. Greedy AI Algorithm 

E. Dynamic Programming AI Implementation 

The Dynamic Programming AI was implemented as a far 
more complex agent that seeks a provably optimal solution. It 
uses a recursive function with memoization to find the shortest 
path to a win state. 

The core of the implementation is a Map<GameState, 
Outcome> which serves as the memoization table. The 
GameState object, which implements equals() and hashCode() 
methods, acts as the key. The Outcome is a simple class storing 
the best move from that state and the minimum number of 
turns required to win. 

The main recursive function, findOptimalOutcome(state), 
first checks if the current state has already been solved by 
looking it up in the memoization table. If not, it explores every 
valid move from the current state, recursively calling itself on 
the resulting nextState. It compares the outcomes of these 
recursive calls (adding 1 to the turn count for the current move) 
and identifies the action that leads to victory in the fewest 

 
Fig. 3. Dynamic Programming AI Implementation 
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turns. Before returning, it stores this optimal result in the 
memoization table to avoid re-computation in the future. 

F. Experimental Design and Data Collection 

To generate comprehensive data for our analysis, a rigorous 
experimental protocol was established. The goal was to test 
each AI's performance, efficiency, and strategic decision-
making across a wide variety of combat scenarios specifically 
designed to highlight the differences between the Greedy and 
Dynamic Programming approaches. 

A suite of eight distinct test cases was designed. These 
scenarios move beyond a simple baseline to create complex 
situations involving resource management, strategic planning, 
and efficiency under pressure. The initial conditions for each 
test case are detailed below: 

1. Baseline: A standard encounter with no immediate 
constraints (PC: 100 HP, 50 Mana; Enemy: 150 HP, 12 
Dmg). 

2. Resource Scarcity: Tests the AI's ability to plan when 
powerful moves are not immediately available (PC: 
100 HP, 15 Mana). 

3. Race Against Time: Puts the AI under significant 
pressure from a standard enemy (PC: 70 HP, 50 
Mana). 

4. Durable Enemy: A longer battle against a less 
threatening foe, testing mana efficiency (Enemy: 120 
HP, 8 Dmg). 

5. Glass Cannon Enemy: A short, high-damage race 
where burst damage is optimal (Enemy: 70 HP, 25 
Dmg). 

6. Strategic Cooldown: Tests planning by making the best 
move unavailable on the first turn (PC: Fireball 
Cooldown = 1). 

7. Mana Trap: A subtle resource puzzle where the AI is 
just one mana point short of a key ability (PC: 100 HP, 
19 Mana). 

8. Perfect Lethal: A scenario where the optimal path is 
simple and requires exact resource usage (PC: 100 HP, 
40 Mana; Enemy: 70 HP). 

The Java simulation was executed via a master script, the 
ExperimentRunner. The simulator was instrumented to 
automatically log the following key data points for every 
individual battle: 

• Result: The outcome of the battle, recorded as a "Win" 
or a "Loss". 

• Total Turns: The number of turns the battle lasted from 
start to finish. 

• Decision Time: The computation time required for the 
AI to choose a move. This was measured in 
nanoseconds using Java's System.nanoTime() for high 
precision and later converted to milliseconds (ms) for 
analysis. 

The results from all simulations were aggregated and written to 
a results.csv file, forming the basis for the quantitative analysis 
presented in the following chapter. 

 

IV. RESULT AND ANALYSIS 

A. Overall Performance Summary 

The complete aggregated results from all simulations are 
presented in Table I. This table provides a high-level overview 
of each AI's performance across the test suite, serving as the 
foundation for the subsequent analysis. 

TABLE I.  AI PERFORMANCE ACROSS ALL TEST CASES 

Test Case AI Type Result Turns to 

End 

Decision 

Time (ms) 

Baseline Greedy Win 9 0.0002 

DP Win 9 0.0075 

Resource 

Scarcity 

Greedy Win 13 0.0002 

DP Win 10 0.0049 

Race 
Against 

Time 

Greedy Loss 6 0.0002 

DP Win 6 0.0031 

Durable 
Enemy 

Greedy Win 12 0.0002 

DP Win 12 0.0053 

Glass 

Cannon 

Enemy 

Greedy Win 3 0.0002 

DP Win 3 0.0016 

Strategic 

Cooldown 

Greedy Win 9 0.0001 

DP Win 9 0.0039 

Mana Trap Greedy Lose 13 0.0002 

DP Win 10 0.0041 

Perfect 
Lethal 

Greedy Win 4 0.0002 

DP Win 4 0.0022 

a. Decision time may be different for different devices 

Several clear trends emerge from this data. First, the 
Dynamic Programming AI achieves a 100% win rate across all 
scenarios where victory is possible. The Greedy AI, in contrast, 
fails completely in two specific scenarios ("Race Against 
Time" and "Mana Trap"). Second, in cases where both AIs 
win, the DP AI consistently finds the solution in an equal or 
fewer number of turns. Finally, there is a stark and consistent 
difference in computational cost: the DP AI's average decision 
time is consistently one to two orders of magnitude greater than 
that of the nearly instantaneous Greedy AI. 

B. Analysis of Strategic Capabilities 

To understand why these performance differences occurred, 
a deeper analysis of the AI's decision-making in key scenarios 
is required. The test cases were specifically designed to expose 
the logical limitations of the Greedy approach and highlight the 
value of the DP algorithm's foresight. 

The most telling results come from the "Resource Scarcity" 
and "Mana Trap" scenarios. In the "Mana Trap" case (PC starts 
with 19 Mana), the PC is just one mana point short of being 
able to cast its most powerful spell, Fireball. The Greedy AI's 
heuristic, which scores Basic Attack (10) higher than Meditate 
(1), forces it into a suboptimal loop. It repeatedly uses Basic 
Attack, never choosing to sacrifice a turn of minor damage to 
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gain the mana needed for a Fireball. This flawed logic leads to 
a 0% win rate. 

The DP AI, however, demonstrates the power of foresight. 
By evaluating future states, its algorithm correctly identifies 
that the path to victory, although non-obvious, begins with the 
Meditate action. It understands that sacrificing one turn of 
damage to gain 15 mana unlocks a much faster and more 
powerful sequence of Fireball attacks later on. This single, 
strategic setup move is something the Greedy algorithm is 
fundamentally incapable of reasoning about, leading to the DP 
AI's win in 10 turns compared to the Greedy AI's guaranteed 
loss in 13 turns. A similar, though less catastrophic, outcome is 
observed in the "Resource Scarcity" scenario, where the DP AI 
finds the win three turns faster than the Greedy AI by using a 
similar lookahead strategy. 

Not all scenarios require complex planning. In the "Glass 
Cannon Enemy" and "Perfect Lethal" test cases, the 
performance of the Greedy AI, in terms of turns-to-win, was 
identical to that of the DP AI. In the "Glass Cannon" scenario, 
the enemy is a high-damage threat that must be defeated as 
quickly as possible. Here, the Greedy AI's simple heuristic of 
"use the highest immediate damage move" aligns perfectly 
with the globally optimal strategy found by the DP AI. There is 
no need for a setup move or long-term planning; maximum 
immediate damage is the correct choice at every step. 

This is a critical finding, as it demonstrates that a more 
complex algorithm is not universally superior. The 
effectiveness of a simple heuristic is highly dependent on the 
problem's context. For straightforward combat encounters 
where the optimal path is aggressive and direct, a Greedy 
algorithm can perform just as well as a more computationally 
expensive DP algorithm, achieving the same outcome with a 
fraction of the processing power. 

C. Analysis of Computational Cost 

While the DP AI's strategic superiority is clear, it comes at 
a significant and measurable cost. Decision Time metric in 
Table I quantifies the computational overhead required for the 
DP algorithm to find its optimal solution. 

 

Fig. 4. Comparison of Decision Times (ms) on A Logarithmic Scale 

 
As illustrated in Fig. 4, the computational resources 

required by the DP AI are consistently greater than those 
required by the Greedy AI. The Greedy AI's decision is nearly 
instantaneous (averaging ~0.0002 ms), as it involves only a 
simple loop and comparison. The DP AI, in contrast, must 
recursively explore a tree of potential game states. While 

memoization prevents this from becoming a full brute-force 
search, the process of generating states, checking the 
memoization table, and performing recursive calls still carries a 
substantial overhead (averaging ~0.005 ms). Although this time 
is trivial in our simple simulator, in a full-scale game with a 
vastly larger state space (more actions, status effects, etc.), this 
cost could scale to become a source of noticeable lag or 
performance degradation. 

D. Discussion of Implications for Game Development 

The results from this experiment confirm the well-
understood theoretical trade-off between Greedy and Dynamic 
Programming algorithms and place it in a practical game 
development context. The DP AI is strategically perfect but 
computationally "expensive," while the Greedy AI is 
computationally "cheap" but strategically "brittle." 

This data provides a clear framework for a game 
developer's design choices. A one-size-fits-all approach to AI 
is not optimal. For the hundreds of common, low-stakes 
enemies a player might encounter, a fast and efficient Greedy 
AI is more than sufficient. Its flaws are unlikely to be noticed 
in quick battles, and its low performance overhead allows for 
many such enemies to be active at once without impacting the 
game's frame rate. 

For critical, memorable encounters, such as a major boss 
battle, a developer could justify the higher computational cost 
of a DP-style agent. In these fights, players expect a deep, 
strategic challenge. An AI that can make non-obvious, 
intelligent setup moves, the very behavior the DP AI 
demonstrated in the "Mana Trap" scenario, provides exactly 
this kind of engaging experience. Therefore, a hybrid approach, 
using cheap, simple AIs for the rank-and-file and reserving 
complex, optimal AIs for key moments, represents the most 
effective application of these findings. 

 

V. CONCLUSION 

This paper presented a quantitative comparative analysis of 
a Greedy algorithm and a Dynamic Programming approach for 
designing AI strategy in a controlled, turn-based RPG combat 
simulator. Through a series of eight distinct test cases, each AI 
is being evaluated on its strategic capability, combat 
effectiveness, and computational performance. The 
experimental results confirmed the initial hypothesis: Dynamic 
Programming AI, by exhaustively exploring the state space, 
consistently achieved a strategically optimal outcome, winning 
battles in the minimum possible number of turns. However, 
this optimality came at the cost of a significantly higher 
computational overhead. Conversely, the Greedy AI proved to 
be extremely fast and efficient but demonstrated critical 
strategic flaws in scenarios that required any degree of 
foresight, leading to suboptimal solutions or outright failure. 

The primary contribution of this research is the generation 
of a clear, data-driven benchmark that illustrates the classic 
"speed vs. smarts" trade-off within the practical context of 
game AI development. By providing hard numbers on metrics 
like win rates, turn counts, and decision times across varied 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

scenarios, this paper offers a tangible reference for developers. 
However, the study has its limitations. The combat model was 
intentionally simplified, involving a single enemy and a limited 
set of actions. A full-scale RPG with multiple party members, a 
wide array of skills, and numerous status effects would create a 
state space with many orders of magnitude larger, which would 
likely make the pure Dynamic Programming approach used 
here computationally infeasible. Furthermore, this analysis was 
limited to two classic, deterministic algorithms and did not 
explore other modern AI paradigms. 

Looking forward, this research opens several interesting 
avenues for future work. The most promising direction would 
be the development of a hybrid AI model that combines the 
strengths of both algorithms. One could design an agent that 
uses the fast Greedy logic for the majority of a battle but 
invokes a limited-depth DP search when the situation becomes 
critical (e.g., when health is low or a powerful enemy ability is 
about to be used). Another area for future research would be to 
expand the experiment to a more complex combat environment 
to analyze how these performance trade-offs scale. Finally, 
comparing these foundational algorithms against other 
techniques, such as Monte Carlo Tree Search or a simple 
Reinforcement Learning agent, would provide an even broader 
understanding of the AI strategy landscape. 

 

 

VIDEO LINK AT YOUTUBE  

Video Link: https://youtu.be/HqALZ6o6EkY 

Program Source Code: https://github.com/kin-ark/Simple-
Turn-Based-RPG-Combat-Simulator 
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